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Various physical, social, and biological systems generate complex
fluctuations with correlations across multiple time scales. In phys-
iologic systems, these long-range correlations are altered with
disease and aging. Such correlated fluctuations in living systems
have been attributed to the interaction of multiple control systems;
however, the mechanisms underlying this behavior remain un-
known. Here, we show that a number of distinct classes of
dynamical behaviors, including correlated fluctuations character-
ized by 1�f scaling of their power spectra, can emerge in networks
of simple signaling units. We found that, under general conditions,
complex dynamics can be generated by systems fulfilling the
following two requirements, (i) a ‘‘small-world’’ topology and (ii)
the presence of noise. Our findings support two notable conclu-
sions. First, complex physiologic-like signals can be modeled with
a minimal set of components; and second, systems fulfilling con-
ditions i and ii are robust to some degree of degradation (i.e., they
will still be able to generate 1�f dynamics).

Complex systems are typically composed of interacting units
that communicate information and are able to process and

withstand a broad range of stresses (1–4). In physiology, free-
running healthy systems typically generate complex output sig-
nals that have long-range correlations [i.e., a 1�f decay of the
power spectra for low frequencies (**, 5–7)]. Deviations from
the 1�f pattern have been associated with disease or aging in
various contexts (3, 8).

Despite its practical and fundamental interest (9), the origin
of such correlated dynamics remains an unsolved problem (4).
Until recently, attention has focused primarily on the complexity
of the specific physiologic subsystems or on the nature of the
nonlinear interactions between them (10–12). In particular,
Boolean variables (which can take one of two values, 0 or 1) and
Boolean functions have been extensively used to model the state
and dynamics of complex systems (see ref. 12 for an introduc-
tion). The reason such a ‘‘simplistic’’ description may be appro-
priate arises from the fact that Boolean variables provide good
approximations to the nonlinear functions encountered in many
control systems (10, 13–15). Random Boolean networks (RBNs)
were proposed by Kauffman (10) as models of genetic regulatory
networks, and they have also been studied in other contexts (13,
14). Wolfram (15), in contrast, proposed that cellular automata
models, which are a class of ordered Boolean networks with
identical units, may explain the real-word complexity. Neither of
these two classes of models has been shown to generate the
complex dynamics with 1�f f luctuations observed in healthy
physiologic systems.

Here, we propose a modeling approach (Fig. 1a) that departs
from traditional approaches in that we pay special attention to
the topology of the network of interactions (4) and the role of
noise (16). Our model is rooted in the following two consider-
ations that are observed frequently in real-world systems. (i) The
units in the system are connected mostly locally but also with
some long-range connections, giving rise to so-called ‘‘small-
world’’ topology (17, 18); and (ii) the interaction between the
units is affected by ‘‘noisy’’ communication and�or by noisy

stimuli (19–23). We demonstrate that simple rules, such as the
majority rule, are able to generate signal with complex fluctu-
ations under simple, but physiologically relevant, conditions.

Methods
The Model. We placed the Boolean units comprising the network
on the nodes of a one-dimensional ring and established bidirec-
tional nearest-neighbor connections (Fig. 1). Then, we added
keN additional unidirectional links (where ke is the mean excess
connectivity and N is the number of units in the system) between
pairs of randomly selected units. Hence, each unit had a set of
links through which incoming signals arrive and that the unit
then processes. During the system evolution, the state of each
neighbor was replaced by a random value with probability �,
which parameterizes the intensity of the noise.

We assigned to each unit i � 1, . . . , N a Boolean function Fi,
which determined the way that the states of the neighbors and
its own state were processed. We restricted our study to Boolean
functions that had only the following two ‘‘effective’’ inputs: the
state of the unit and the average state of all other neighbors. This
restriction yielded 64 unique symmetric Boolean functions (see
Figs. 2 and 7–11 and Supporting Methods, which are published as
supporting information on the PNAS web site), and it had the
advantage of permitting a topology-independent implementa-
tion of the Boolean functions, thus enabling a systematic study
of the effect of different rules on the dynamics of the system.

Quantification of the Dynamical Behavior of the System. We started
all of our numerical simulations with a random initial configu-
ration and let the system evolve synchronously according to the
rules of the model. We defined the state S(t) of the system as the
sum of the states �i of all of the Boolean units as follows:

S�t� � �
i

�i�t�. [1]

We recorded S(t) during the course of the simulation (see Fig.
3 a–c) and quantified the complexity of the time series generated
in terms of its autocorrelation function (3). We applied the
detrended fluctuation-analysis method (5), which quantifies
long-range time correlations in the dynamical output of a system
by means of a single scaling exponent � (Fig. 3d). Brownian noise
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corresponds to � � 1.5, whereas uncorrelated white noise
corresponds to � � 0.5. For many physiologic signals, one
observes � � 1, corresponding to 1�f behavior, which can be seen
as a ‘‘trade off’’ between the two previous cases (3).

Results
RBNs. The RBN model corresponds to a completely random
network with randomly selected Boolean rules for the units. As

shown in Fig. 4a, we find white-noise dynamics for essentially any
pair of values of ke and � within the ranges considered, suggest-
ing that, even in the presence of noise, a system of random
Boolean functions cannot generate 1�f dynamics. This result is
not unexpected because the random collection of Boolean
functions comprising the system prevents the development of
any order or predictability in the dynamics.

Cellular-Automata Models with Small-World Topology and Noise. We
systematically study the 64 symmetric rules (see Figs. 2 and 7–11
and Supporting Methods) for different pairs of values of ke and �.
Some of the rules have parallels to physiologically meaningful
dynamics. Rule 232 is a majority rule; that is, each unit will be
active at the next time step only if the majority of its neighbors
is active presently. Rule 50 is a threshold rule with refractory
time period; that is, whenever the inputs of the neighbors surpass
a certain value, a unit becomes active in the next time step and
then will be inactive for at least one time step. The 64 symmetric
rules lead to three qualitatively distinct phase spaces (Fig. 4 b–d).
Rule 232, the majority rule, which is representative of the first
type of phase space, displays three distinct types of dynamical
behavior (Fig. 4b). For small ke, we find mostly Brownian-like
scaling. For large ke, we find mostly white-noise dynamics. Of
greatest interest, for intermediate values of ke and for a broad
range of values of the intensity of the noise �, we find 1�f
f luctuations.

Rule 50, which is representative of a second type of phase
space, displays fewer types of dynamical behavior. In partic-
ular, we find only a narrow range of noise intensities (with a
weak dependence on ke) for which the dynamics display 1�f
correlations. For � � 0.1, the dynamics become uncorrelated
(Fig. 4c). Rule 160, which is representative the third type of
phase space, displays white-noise dynamics for all values of ke
and � (Fig. 4d).

Note that for ke � 0 (i.e., when the network is a one-

Fig. 1. Emergence of complex dynamics in simple signaling networks. (a) The units constituting the network, which are located on the nodes of a
one-dimensional lattice, have bidirectional nearest-neighbor connections. (b) A number keN of additional unidirectional links is established between pairs of
randomly selected units, where ke is the mean excess connectivity and N is the number of units in the system. At time t � 0, we assign to each unit i � 1,. . . ,N
a state �i (0) randomly chosen from the set {0,1} and a Boolean function Fi; (Eq. 1). This Boolean function (or rule) determines the way in which the inputs are
processed. Each unit effectively processes two inputs, one unit corresponding to the average state of its neighbors and one unit corresponding to its own state.
With probability �, a unit ‘‘reads’’ a random Boolean variable instead of the state of a neighbor, where the parameter � quantifies the intensity of the noise.
Note that the noise does not alter the state of the units but only the value read by its neighbor. At each subsequent time step, each unit updates its state
synchronously according to its Boolean function. (c–e) Time evolution of systems comprising 512 units with Fi � 232 for all units, � � 0.1, and ke � 0.15 (c), ke

� 0.45 (d), and ke � 0.90 (e). Red indicates �i(t) � 1, and yellow indicates �i(t) � 0. The time evolution for systems starting from the same initial configuration
and using the same sequence of random numbers is shown. Thus, the difference in the dynamics is uniquely due to the different number of long-distance links.
For ke � 0.15, the system quickly evolves toward a configuration with several clusters in which all of the units are in the same state. The boundaries of these clusters
drift because of the noise, but the state of the system S(t) is quite stable, and the dynamics are close to Brownian noise. In contrast, for ke � 0.90, a large stable
cluster develops and the state of the system changes only when some units change state because of the effect of the noise. This process yields white-noise
dynamics. For ke � 0.45, clusters are formed, but they are no longer stable, in contrast to what happens for small ke. In this case, information propagates through
the random links, which can lead to a change in the state of one or more units inside a cluster. Our results suggest that because these long-range connections
exist on all length scales, they lead to long-range correlations in the dynamics and the observed 1�f behavior (Fig. 3b).

Fig. 2. Selection of Boolean rules for investigation. Our goal is to investigate
Boolean functions that display nontrivial dynamics and can be generalized to
any number of inputs. To this end, we start from 256 rules of three inputs but
then restrict our attention to the ones that are symmetric under permutations
of the external inputs. This selection results in 64 Boolean rules. However, each
rule has another rule that is its complement (i.e., that displays the same
dynamics when switching zeros and ones) or inverse (i.e., that displays the
same dynamics when taken every other step). Because these pairs of rules have
equivalent dynamics, we need to investigate only 32 independent rules. Of
these rules, eight do not display fluctuations, even in the presence of noise,
resulting in 24 independent rules that could present complex fluctuations. The
phase spaces of each of these 24 rules are shown in Figs. 7–11.
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dimensional lattice), the model is not able to generate 1�f
dynamics. This result implies that, in the context of the model,
the existence of long-range connections (i.e., the small-world
topology achieved by making ke � 0) is an essential ingredient
for the emergence of 1�f dynamics.

Robustness of the Findings. To determine the generality of the
results presented above, one needs to address the questions of
how these findings are affected by (i) changes in the topology of
the network and (ii) ‘‘errors’’ in the implementation of the rules
by the units.

Concerning i, we note that the network topologies that have
been considered span the cases of ordered one-dimensional
lattices, small-world networks, and random graphs (24). How-
ever, all considered networks are composed of units with
approximately the same degree, i.e., the same number of con-
nections. To investigate the role of the distribution of number of
connections, we also study networks that span the range of
empirically observed degree distribution: a � distribution, an
exponential distribution, and a power law distribution. The last
case corresponds to the so-called scale-free networks (18).
Notably, we find that the picture of the phase space shown in Fig.
4b does not get altered by these changes in the degree distribu-
tion (see Figs. 7–11 and Supporting Methods).

To address ii, we systematically explore the dynamical behav-
iors in the phase space defined by (ke,�) for systems composed
of units operating according to either rule 232 or a randomly

selected rule. Notably, we find that, with as many as one-fourth
of all units operating according to random Boolean functions,
the model still displays a rich phase space including white, 1�f,
and Brownian noise (Fig. 5). This finding holds even if, instead
of using random Boolean functions, we consider a single Boolean
function (Fig. 6).

Discussion
Our results are notable for various reasons. First, they demon-
strate that a model of signaling networks is able to generate a
broad range of behaviors that are reminiscent of those observed
in physiologic systems. Second, we show, for a rather general
class of models, that various dynamical behaviors can emerge
only under restrictive, but physiologically relevant, assumptions;
namely, the system must have a small-world topology, and noise
must be present.

An interesting aspect of our results is that some of the rules
that we consider have plausible physiologic interpretations. For
example, rule 232 is a rule in which a unit changes its state to that
of the majority of the incoming inputs. A majority rule appears
to be operative in the central nervous system, where multiple
fibers (excitatory or inhibitory) converge onto a single neuron.
Action potentials converging in a neuron summate to bring the
neuron to the threshold for firing (25). A majority rule also
appears to be operative in the baroreflex control of the cardio-

Fig. 3. Quantification of the correlations in the state of Boolean signaling
networks. As discussed, we define the state of the system as S(t) � � �i(t). We
show S(t) for a system with n � 4,096 units; � � 0.1; Fi � 232; and ke � 0.90,
ke � 0.45, and ke � 0.15. The three values of ke lead to quite different dynamics
of the system. (a) For a small number of random links, the time correlations
display trivial long-range correlations such as found for Brownian noise. (b)
For an intermediate value of ke, long-range correlations emerge and the
power spectrum displays a power-law behavior, S( f) � 1�f� with � � 1. b1 and
b2 display the state of the system according to different definitions. In b1, the
state of the system is defined as the sum of the states of a random sample
comprising one-eighth of all units, whereas in b2, the state of the system is
defined as the sum of the states of a block of contiguous units constituting
one-eighth of the systems. Our results indicate that the evolution of a subset
of the population is similar to the dynamics of the whole system. (c) For a large
number of random links, ke � 0.90, the dynamics are less correlated. (d)
Estimation of temporal autocorrelations of the state of the system by the
detrended fluctuation analysis method (5). We show the log–log plot of the
fluctuations F(n) in the state of the system versus time scale n for the time series
shown in a--c. In such a plot, a straight line indicates a power-law dependence
F(n) � n�. The slope of the lines yields the scaling exponent �, which for a
number of physiologic signals from free-running, healthy, and mature systems
takes values close to 1 (3). The exponent � is related to the exponent � of the
power spectrum of the fluctuations, S( f) � 1�f�, through the relation � � 2� �
1. The data sets have been shifted upward, and the different sets correspond
(from top to bottom) to the time series shown in a–c.

Fig. 4. Systematic evaluation of the correlations in the dynamics generated
by different rules. We quantify the long-range correlations in the dynamics by
means of the detrended fluctuation-analysis exponent � (5) systematically
estimated for time scales 40 	 n 	 4,000. We show � for 3,721 pairs of values
of ke and the noise � in the communication between the units comprising the
network. For all simulations, we follow the time evolution of systems com-
prising 4,096 units for a transient period lasting 8,192 time steps, and we then
record the time evolution of the system for an additional 10,000 time steps. To
avoid artifacts due to the fact that the units switch states with period 2 for
some of the rules, we consider in our analysis the state of the systems at every
other time step. (a) RBN as defined by Kauffman (10). Our results show that the
dynamics generated by these systems are generally of the white-noise type,
with a weak dependence on the noise intensity and no dependence on the
number of long-distance links. (b) Rule 232, also known as the majority rule.
This rule is representative of two other rules: rules 19 and 1. Rule 232 displays
a very rich phase space with various dynamical behaviors all of the way from
white noise (white and green) to Brownian noise (black). (c) Rule 50 is a
threshold rule with refractory period. This rule is representative of eight other
rules: rules 5, 36, 37, 73, 77, 94, 108, and 164. These rules display a relatively
simple phase space with behaviors extending from white noise to 1�f noise.
The 1�f behavior is restricted to very small noise intensities and there is a very
weak dependence on ke. (d) Rule 104. This rule is representative of 12 other
rules (see Figs. 7–11). Their phase space is extremely simple because it displays
only white-noise behavior.

Amaral et al. PNAS � November 2, 2004 � vol. 101 � no. 44 � 15553

A
PP

LI
ED

M
A

TH
EM

A
TI

CS



vascular system. The baroreflex is a feedback loop that controls
heart rate continuously by modulating the degree of sympathetic
and parasympathetic nervous system input to the sinus node of
the heart. Changes in heart rate values are determined by
whichever input is dominant at the moment (25).

Our results demonstrate that complex f luctuations are
present even when a fraction of the units obeys randomly
chosen Boolean functions, suggesting that systems composed
of units operating according to the majority will be robust to
the removal or failure of units. Also, because this complex
dynamics does not depend on a scale-free topology, these
systems do not necessarily display the vulnerability to targeted
attack observed in scale-free networks (26). In biological
systems, this robustness could support the ‘‘physiologic re-
serve’’ enabling an organism to overcome age- or disease-
related loss of system components.

Additionally, our findings raise the intriguing possibility that
the interactions within physiologic systems and their degrada-
tion with aging and pathology may be symbolically mapped as
a ‘‘walk’’ on the phase space (ke,�). According to this model,
1�f dynamics similar to that found for healthy physiology are
generated when noise intensity and connectivity reside in a
well defined range (27). A loss of complexity with a breakdown
of long-range correlations would be anticipated when these
parameters assume values outside this range (Fig. 4). Support
for this formulation comes from analysis of heart rate dynam-
ics with aging and disease, where connectivity or coupling
among system components is likely to be degraded (3, 4, 8).
Similarly, evidence suggests that decreased social connected-
ness and the corresponding decrease in noisy stimulation may

be associated with increased cardiac mortality and decreased
functional recovery from stroke or dementia (28, 29).

In a related way, the development of complex, adaptive
dynamics during the maturation of the organism may be ac-
counted for, at least in part, by the evolution of appropriate
connections (see refs. 30 and 31 for empirical evidence). Our
model predicts that the fraction of nonlocal connections has an
optimal range of values; hence, an excessive number of certain
types of inputs may also degrade functionality. Thus, our results
are consistent with empirical evidence suggesting that develop-
ment and maintenance of healthy function may require adjusting
the number of connections. Last, the model may also provide a
robust way to generate fluctuations that closely resemble phys-
iologic signals, which could be implemented in medical devices,
such as mechanical ventilators (32, 33) and hormone infusion
pumps (34).
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Fig. 5. Phase space for signaling networks with mixing of Boolean rules. We
systematically calculate the exponent �, by characterizing the correlations
in the dynamics, for systems composed of units operating according to rule
232 but with some fixed fraction of units operating according to a randomly
selected symmetric Boolean rule. Each value is an average over five indepen-
dent runs. (a) One-sixteenth of the units operating according to a randomly
selected rule. (b) One-eighth of the units operating according to a ran-
domly selected rule. (c) One-fourth of the units operating according to a
randomly selected rule. (d) One-half of the units operating according to
a randomly selected rule. These figures suggest that the presence of random
Boolean functions leads to a decrease in the richness of the phase space of the
systems. Specifically, if more than one-fourth of all of the units operate
according to randomly selected Boolean functions, then the phase space
displays mostly white-noise dynamics.

Fig. 6. Phase space for signaling networks with mixing of two Boolean rules.
We systematically calculate the exponent �, characterizing the correlations in
the dynamics, for systems composed of units operating according to either
rule 232 or 50. Each value is an average over five independent runs. (a)
One-sixteenth of the units operating according to rule 50 and 15�16ths of the
units operating according to rule 232. (b) One-eighth of the units operating
according to rule 50 and seven-eighths of the units operating according to rule
232. (c) One-fourth of the units operating according to rule 50 and three-
fourths of the units operating according to rule 232. (d) One-half of the units
operating according to rule 50 and one-half of the units operating according
to rule 232. When both rules are present in the system, and at least 50% of the
units operate according to rule 232, we still find several distinct classes of
dynamical behaviors, including a wide range of parameter values that gen-
erate 1�f noise.
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